
CS 421 Lecture 13CS 421 Lecture 13
Execution of dynamic languages

Sun HotSpot run-time system for JavaSun HotSpot run time system for Java
Tags, just-in-time compilation, reflection

Memory management
Memory layout; definition of “garbage”
Reference-counting
Garbage collectiong

Non-compacting (mark-and-sweep)
Compacting

Lecture 13

Dynamic languagesDynamic languages
Automatic memory management
Tagged values (for gc run time type checking reflection)Tagged values (for gc, run-time type-checking, reflection)
Sometimes: dynamic type-checking
Sometimes: reflectionSometimes: reflection
Usually: execute virtual machine code

Will use Sun HotSpot Java virtual machine as example.

Lecture 13

Java HotSpot run-time systemJ p y
The Java compiler, javac, translates Java programs into
Java Virtual Machine language programs.
Example: Code for “x := x + 3; print x; return 0;” –

iload 1
ldc 3ldc 3
iadd
istore 1
iload 1
getstatic java/lang/System/out Ljava/io/PrintStream
swapp
invokevirtual java/io/PrintStream/println(I)V
return

J b f H tS t i t t JVM

Lecture 13

Job of HotSpot is to execute JVM programs.

Java HotSpot run-time systemJava HotSpot run time system
Developed around 1999 – replaced existing widely-used
Java VMJava VM
Described in several places, e.g.
http://java.sun.com/products/hotspot/whitepaper.html
HotSpot is VM used in java program, and embedded in
many browsers

(Note re: above document: word “compiler” used to refer
t t l t f J b t d t ti hi d to translator from Java bytecode to native machine code,
not translator from source code.)

Lecture 13

Java HotSpot run-time systemJava HotSpot run time system
Garbage collection
Two word object headersTwo-word object headers
Executes .class files (Java VM code)

“Just in time” compilationJust-in-time compilation

Meta-objects represented as objects

Lecture 13

Meta-objects represented as objectsMeta objects represented as objects
Class and Method are classes
Each class corresponds to a Class objectEach class corresponds to a Class object

Methods of class Class include getDeclaredMethods(),
getFields(), …

Each method corresponds to a Method object
Methods of class Method include getParameterTypes,

tR t T getReturnType, …

E.g. can invoke methods that are detected dynamically –
e.g. search all objects reachable from one object, and e.g. search all objects reachable from one object, and
invoke method print on any object whose class contains a
print method.

Lecture 13

Tagged valuesTagged values
Every object in heap is preceded by two words

First word is pointer to Class object of this method’s classFirst word is pointer to Class object of this method s class
(which gives layout of object)
Second word contains g.c. infog
Arrays contain third word giving length

Lecture 13

Just-in-time compilationJust in time compilation
Methods obtained in bytecode form (.class files)
translated to native machine code on the flytranslated to native machine code on the fly
Numerous optimizations employed

Very importanth optimization: inliningy p p g

Level of optimization determined by monitoring
execution

Heavily used methods are optimized, and possibly re-
optimized more aggressively

Because this is most innovative aspect of HotSpot it is Because this is most innovative aspect of HotSpot, it is
main topic of HotSpot papers.

Lecture 13

Automatic memory managementAutomatic memory management
Memory in heap consists of objects containing pointers
to other objects.to other objects.
Objects in heap are accessed in program by using
pointers stored in local variables, which are on stack.
Therefore, only heap objects that matter are reachable
either directly from stack, or from fields of other

h bl h bjreachable heap objects
Objects that are not reachable are called garbage.
A t ti t tt t t Automatic memory management attempts to
make garbage cells available for allocation.

Lecture 13

Creation of garbageCreation of garbage
Example:

let f n y = let x = numbers 1 n (* list [1;2; ;n] *)let f n y = let x = numbers 1 n (* list [1;2;…;n] *)
in x@y

Creates n “cons cells” of garbage, because x@y makes a
copy of x.

Lecture 13

Representing free memoryRepresenting free memory

Alternatives: free list or free area
F li F i l d li k d li Free list: Free memory is placed on a linked list.
Request for memory iterates over list looking for
big enough memory areabig enough memory area.
Free area: Unused area of memory reserved for
allocation. Memory allocated from bottom of this allocation. Memory allocated from bottom of this
area.

Will discuss free list representation first scuss ee st ep ese tat o st

Lecture 13

History of a heap object, using “free list” system

H Heap
contains
data that
have been
allocated

d d and data on
free list

Lecture 13

History of a heap object, using “free list” system

Program executes:
x = new C(); orx new C(); or
x = malloc(); or
x = a::b
(x a local
variable of
function f)

Lecture 13

History of a heap object, using “free list” systemHistory of a heap object, using free list system
Return from f.
Assume no other Assume no other
objects point to
the new object.
New object no
longer reachable
(b (but not
allocatable
either)either)

Lecture 13

History of a heap object, using “free list” systemHistory of a heap object, using free list system

Eventually object Eventually, object
is returned to free
list.

Lecture 13

Three types of memory cellsThree types of memory cells
Allocatable – i.e on free list

Initially contains all cellsInitially contains all cells

Reachable
Obtained by request for heap memoryy q p y
Still reachable from stack (possibly via other heap objects)

Neither
Once reachable, now not – e.g. was reachable from a local
variable of function f, but have returned from f
Was not returned to free listWas not returned to free list

“Neither” category is most interesting – memory could
be made allocatable.

Lecture 13

Reference countingReference counting
Use free list
Track number of pointers to every objectTrack number of pointers to every object
Adjust count each time a pointer is copied/assigned

“p = q”: Increment refcnt(*q)p q : Increment refcnt(q)
Decrement refcnt(*p)
if refcnt(*p)=0 then return *p to free list

and decrement refcnt of alland decrement refcnt of all
objects that *p points to

All objects go to free list as soon as they are non-reachable –
no “neither” category

Lecture 13

Reference counting (cont.)g ()

Advantages
Cost spread out over computationCost spread out over computation

Disadvantages
Cannot easily handle cycles among objects (which occur a lot)y y g j ()

Lecture 13

Garbage collectiong

Two methods
Non-copying (mark-and-sweep)Non copying (mark and sweep)

Uses free list representation

Copying
Uses free area representation

Unlike reference-counting:
Cells go into “neither” category temporarilyCells go into neither category temporarily
Are recovered all at once
Costs vary according to method, but happen all at once –y g , pp
“g.c. pause” – and are not amortized

Lecture 13

Non-copying garbage collectionpy g g g

Use free list
Reserve one bit in each object header called the Reserve one bit in each object header, called the
“reachable” bit
Start with reachable bit zero in every headery
Traverse reachable data, setting reachable bit
Iterate over entire heap. If reachable bit is 1, reset it; if it p
is zero, place that memory chunk on free list
Observations

Reachable data is not moved
Reachable data remains spread across memory
Cost is linear in total size of heap

Lecture 13

Cost is linear in total size of heap

Copying garbage collectionpy g g g

Use free area
Half of memory is reserved (!); all allocation happens in Half of memory is reserved (!); all allocation happens in
other half, called half-in-use.
Half-in-use is divided into used area and free area
Allocate memory from bottom of free area. When free
area is exhausted, do g.c.
G.C.: Traverse reachable object, moving them to
reserved area and adjusting all pointers. Reserved area

 b h lf i F i t f now becomes half-in-use. Free area is area on top of
moved objects.

Lecture 13

History of a heap object, using “free area” system

H Heap
contains
data that
have been
allocated –

 some
reachable,
some not

Lecture 13

History of a heap object, using “free area” system

Program executes:
x = new C(); or()
x = malloc(); or
x = a::b
(x a local
variable of
function f)

Lecture 13

History of a heap object, using “free area” system

Return from f.
Assume no other Assume no other
objects point to
the new object.
New object no
longer reachable
(b (but not
allocatable
either)either)

Lecture 13

History of a heap object, using “free area” system

Eventually g c Eventually, g.c.
is done and
moves
reachable data
to reserved
memory areamemory area.

Lecture 13

Copying garbage collection (cont.)py g g g ()

Observations
Data is moved; all pointers must be adjustedData is moved; all pointers must be adjusted

Works only if garbage collector knows which values are pointers,
and if address arithmetic is not allowed.

R h bl d t dReachable data are compressed
Cost is linear in size of reachable data
Traversal normally done breadth-firstTraversal normally done breadth first

Lecture 13

Generational garbage collectiong g

Variant of copying collector
Most data either long lived or short livedMost data either long-lived or short-lived
Both methods described spend a lot of time traversing
and/or copying long-lived datapy g g
To avoid this, divide memory into four spaces:

Young-in-use
Young reserved
Old-in-use
Old dOld reserved

Start allocating from young-in-use, proceed as for regular
copying g c

Lecture 13

copying g.c.

Generational garbage collection (cont.)g g ()

When a g.c. does not succeed in recovering memory for
young space, move data from young space to old-in-use. young space, move data from young space to old in use.
Continue to allocate from young-in-use.
When old-in-use fills up, copy to old reserve.
Observations

Copying of old space a rare event
GC in young space inexpensive because most young memory
is garbage
Can extend idea to more than two “generations”Can extend idea to more than two generations

Lecture 13

Java HotSpot run-time system g.c.J p y g

HotSpot uses two-generation collector
Young generation uses copying collectorYoung generation uses copying collector
Old generation uses mark-and-compact method –
compact in placep p

Lecture 13

