CS 421 Lecture |3

» Execution of dynamic languages

Sun HotSpot run-time system for Java
Tags, just-in-time compilation, reflection
Memory management
Memory layout; definition of “garbage”
Reference-counting

Garbage collection
Non-compacting (mark-and-sweep)
Compacting

Lecture 13

Dynamic languages

» Automatic memory management

» Tagged values (for gc, run-time type-checking, reflection)
» Sometimes: dynamic type-checking

» Sometimes: reflection

» Usually: execute virtual machine code

» Will use Sun HotSpot Java virtual machine as example.

Lecture 13

Java HotSpot run-time system

» The Java compiler, javac, translates Java programs into
Java Virtual Machine language programs.

» Example: Code for “x := x + 3; print x; return 0;” —
iload |
|dc 3
iadd
istore |
iload |
getstatic java/lang/System/out Ljava/io/PrintStream
swap
invokevirtual java/io/PrintStream/printin(l)V
return

» Job of HotSpot is to execute JVM programs.

Lecture 13

Java HotSpot run-time system

» Developed around 1999 — replaced existing widely-used
Java VM

» Described in several places, e.g.

» HotSpot is VM used in java program, and embedded in
many browsers

(Note re: above document: word “compiler” used to refer
to translator from Java bytecode to native machine code,
not translator from source code.)

Lecture 13

Java HotSpot run-time system

» Garbage collection
» Two-word object headers

» Executes .class files (Java VM code)
» “Just-in-time” compilation

» Meta-objects represented as objects

Lecture 13

Meta-objects represented as objects

» Class and Method are classes

» Each class corresponds to a Class object

» Methods of class Class include getDeclaredMethods(),
getFields(), ...
» Each method corresponds to a Method object
» Methods of class Method include getParameterTypes,
getReturnType, ...

» E.g. can invoke methods that are detected dynamically —
e.g. search all objects reachable from one object, and
invoke method print on any object whose class contains a
print method.

Lecture 13

Tagged values

» Every object in heap is preceded by two words

» First word is pointer to Class object of this method’s class
(which gives layout of object)

» Second word contains g.c. info
» Arrays contain third word giving length

Lecture 13

Just-in-time compilation

» Methods obtained in bytecode form (.class files)
translated to native machine code on the fly
» Numerous optimizations employed
» Very importanth optimization: inlining
» Level of optimization determined by monitoring
execution

» Heavily used methods are optimized, and possibly re-
optimized more aggressively

» Because this is most innovative aspect of HotSpot, it is
main topic of HotSpot papers.

Lecture 13

Automatic memory management

» Memory in heap consists of objects containing pointers
to other objects.

» Objects in heap are accessed in program by using
pointers stored in local variables, which are on stack.

» Therefore, only heap objects that matter are reachable
either directly from stack, or from fields of other
reachable heap objects

» Objects that are not reachable are called garbage.

» Automatic memory management attempts to
make garbage cells available for allocation.

Lecture 13

Creation of garbage

» Example:

let f ny =let x = numbers | n (* list [I;2;...;n] *)

in x@y

Creates n “cons cells” of garbage, because x@y makes a
copy of x.

Lecture 13

Representing free memory

» Alternatives: free list or free area

» Free list: Free memory is placed on a linked list.
Request for memory iterates over list looking for
big enough memory area.

» Free area: Unused area of memory reserved for
allocation. Memory allocated from bottom of this
area.

» Will discuss free list representation first

Lecture 13

History of a heap object, using “free list” system

|

ISR
Reap Y)
contains £ *j
data that —
have been /////// - A
allocated — T 4;,,__
and data on / ree”
free list / / // // /4/ = n use

Pointers ‘))J(} ound l9€'\‘wtevw
(_ﬁwti“ f/ ave h'ku* SW)

De QL\'L(.IL

Lecture 13

History of a heap object, using “free list” system

Program executes:
x = new C(); or

x = malloc(); or

X = a:b

(x a local

variable of 'fﬂm
function f) S

Lecture 13

7777

TI7777T
S/

)

/S S

_///////‘

,f:v-{'c
St~ :
rO (N

Ts"‘r
e —

History of a heap object, using “free list” system

Return from f.

Assume no other
objects point to
the new obiject.

New object no
longer reachable
(but not
allocatable
either)

Lecture 13

(/A
S

,///////

—

ec Uis
/N ﬂﬂ e

S

History of a heap object, using “free list” system

Eventually, object

l 1
. o
is returned to free L -1 AN
list. __/ j/
/////// fre t*s"r
re ¥

S

l

——

Lecture 13

Three types of memory cells

» Allocatable — i.e on free list

» Initially contains all cells
» Reachable

» Obtained by request for heap memory

» Still reachable from stack (possibly via other heap objects)
» Neither

» Once reachable, now not — e.g. was reachable from a local
variable of function f, but have returned from f

» Was not returned to free list

» “Neither” category is most interesting — memory could
be made allocatable.

Lecture 13

Reference counting

» Use free list
» Track number of pointers to every object

» Adjust count each time a pointer is copied/assigned

» “p=q": Increment refcnt(*q)
Decrement refcnt(*p)
if refcnt(*p)=0 then return *p to free list
and decrement refcnt of all

objects that *p points to

» All objects go to free list as soon as they are non-reachable —
no “neither” category

Lecture 13

Reference counting (cont.)

» Advantages

» Cost spread out over computation

» Disadvantages

» Cannot easily handle cycles among objects (which occur a lot)

—[

e U]
e

Lecture 13

Garbage collection

» Two methods

» Non-copying (mark-and-sweep)

» Uses free list representation
» Copying
» Uses free area representation
» Unlike reference-counting;
» Cells go into “neither” category temporarily
» Are recovered all at once

» Costs vary according to method, but happen all at once —
“g.c. pause” — and are not amortized

Lecture 13

Non-copying garbage collection

» Use free list

» Reserve one bit in each object header, called the
“reachable” bit

» Start with reachable bit zero in every header
» Traverse reachable data, setting reachable bit

» lterate over entire heap. If reachable bit is |, reset it; if it
is zero, place that memory chunk on free list
» Observations
» Reachable data is not moved
» Reachable data remains spread across memory

» Cost is linear in total size of heap

Lecture 13

Copying garbage collection

» Use free area

» Half of memory is reserved (!); all allocation happens in
other half, called half-in-use.

» Half-in-use is divided into used area and free area

» Allocate memory from bottom of free area. When free
area is exhausted, do g.c.

» G.C.: Traverse reachable object, moving them to
reserved area and adjusting all pointers. Reserved area
now becomes half-in-use. Free area is area on top of
moved objects.

Lecture 13

History of a heap object, using “free area” system

Heap
contains — \ \
data that

have been

allocated —
some ~e —=

reachable, Q;(:!‘e,r /
some not 6 //

Lecture 13

f‘rscrwi

History of a heap object, using “free area” system

Program executes:
x = new C(); or

— | \
x = malloc(); or
X =a:b
(x a local N | N‘:"Mﬂ

:c/arial?le ?)f /) / /
//

Lecture 13

History of a heap object, using “free area” system

Return from f.

Assume no other - ‘ \
objects point to
the new object. —>)

New object no ///___/ / r(S!MJl
longer reachable / / / /

(but not
allocatable /
either) //

Lecture 13

1

History of a heap object, using “free area” system

Eventually, g.c.
is done and
moves
reachable data
to reserved
memory area. <

///////

feﬁc\\ml" \Q
oy ¢ s w\7

'\(59‘(—\1‘-‘9\

Lecture 13

Copying garbage collection (cont.)

» Observations

» Data is moved; all pointers must be adjusted

» Works only if garbage collector knows which values are pointers,
and if address arithmetic is not allowed.

» Reachable data are compressed
» Cost is linear in size of reachable data

» Traversal normally done breadth-first

Lecture 13

Generational garbage collection

» Variant of copying collector
» Most data either long-lived or short-lived

» Both methods described spend a lot of time traversing
and/or copying long-lived data
» To avoid this, divide memory into four spaces:
» Young-in-use
» Young reserved
» Old-in-use
» Old reserved

» Start allocating from young-in-use, proceed as for regular
copying g.c.

Lecture 13

Generational garbage collection (cont.)

» When a g.c. does not succeed in recovering memory for
young space, move data from young space to old-in-use.
Continue to allocate from young-in-use.

» When old-in-use fills up, copy to old reserve.
» Observations

» Copying of old space a rare event

» GC in young space inexpensive because most young memory
is garbage

» Can extend idea to more than two “generations”

Lecture 13

Java HotSpot run-time system g.c.

» HotSpot uses two-generation collector
» Young generation uses copying collector

» Old generation uses mark-and-compact method —
compact in place

Lecture 13

